The write-up for my talk:
1) Shaders are awesome. Shadertoy site, "The Book of Shaders" online book, etc.
See dmm.dreamwidth.org/20076.html
2) I am playing with neuromorphic computations with linear streams.
See anhinga.github.io
There are many ways to view this topic. One of the possible viewpoints: we want to synthesize animations, just like we synthesize digital music and audio: via composition of unit generators (invented by Max Mathews (Bell Labs, 1957)).
Some examples of that idea can be found in our Project Fluid: github.com/anhinga/fluid
I showed a Processing 2 run roughly corresponding to this recording: https://youtu.be/fEWcg_A5UZc
3) If there are questions afterwards, or if people wants to collaborate on this, one of the ways to contact me is the first author's e-mail here: arxiv.org/abs/1512.04639
(The meetup was on October 16 near Davis Square.
Boston Tech Poetics exists is Boston for many years, it used to be called Creative Coding at first.)
1) Shaders are awesome. Shadertoy site, "The Book of Shaders" online book, etc.
See dmm.dreamwidth.org/20076.html
2) I am playing with neuromorphic computations with linear streams.
See anhinga.github.io
There are many ways to view this topic. One of the possible viewpoints: we want to synthesize animations, just like we synthesize digital music and audio: via composition of unit generators (invented by Max Mathews (Bell Labs, 1957)).
Some examples of that idea can be found in our Project Fluid: github.com/anhinga/fluid
I showed a Processing 2 run roughly corresponding to this recording: https://youtu.be/fEWcg_A5UZc
3) If there are questions afterwards, or if people wants to collaborate on this, one of the ways to contact me is the first author's e-mail here: arxiv.org/abs/1512.04639
(The meetup was on October 16 near Davis Square.
Boston Tech Poetics exists is Boston for many years, it used to be called Creative Coding at first.)
no subject
Date: 2019-10-29 07:46 am (UTC)Вот на что я никогда не смотрел: в обычной топологии есть довольно тривиальная двойственность, можно брать алгебры открытых множеств (то есть алгебры Гейтинга, которые народ ещё называет псевдо-Булевыми алгебрами), а можно брать алгебры замкнутых множеств (то есть алгебры Брауэра, которые народ ещё называет dual Heyting algebras или co-Heyting algebras).
Известно ли, как в контексте Lawvere-Tierney topology делается такого рода двойственность?
(Вопрос мой, конечно, показывает отсутствие близкого знамомства с этой конструкцией.)
no subject
Date: 2019-10-29 02:42 pm (UTC)no subject
Date: 2019-11-07 07:51 am (UTC)http://tac.mta.ca/tac/reprints/articles/1/tr1abs.html
In this paper, we see a rather simple duality between quasi-metrics and fuzzy partial orders (or, between quasi-pseudo-metrics and fuzzy pre-orders). And, on top of that, one can interpret those structures as enriched categories (triangle inequality corresponds to transitivity and corresponds to categorical composition).
This is one of the most remarkable papers by Lawvere...
no subject
Date: 2019-11-07 03:43 pm (UTC)Да, открыла мне когда-то горизонты сознания.
no subject
Date: 2019-11-08 05:16 am (UTC)http://www.acsu.buffalo.edu/~wlawvere/
http://tac.mta.ca/tac/reprints/index.html
no subject
Date: 2019-11-08 06:29 am (UTC)